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Liquid Argon Detectors for
Long Baseline
Neutrino Physics



Long-baseline neutrino physics provides a window
into neutrino oscillation physics

hierarchy of the neutrino masses, structure of the mixing
matrix, CP Violation in the neutrino sector

New high intensity sources available for
these programs.....

Target Bullding
[

Near Detector
for MINOS

Limiting factor in sensitivity for long-baseline neutrino
physics is v, event rate and background rejection



Massive LArTPCs provide excellent means to
do this physics

* Improved efficiencies and background rejection
ameliorate statistics limitations of long-baseline
neutrino physics

e Success of the ICARUS To600 proves technical
feasibility for “small” detectors

e How much better are they?
e Can we build these detectors?

—» focus on efforts at FNAL, but there are also
efforts at T2K and CNGS
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Liquid Argon
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Allows for high resolution imaging like bubble
chambers, but with calorimetry and continuous
digital readout (no deadtime)
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Electrons versus n''s at 1.5 GeV

Dot indicates hit
color indicates collected charge
green=1 mip, red=2 mips
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Multiple secondary tracks
can be traced back to the
same primary vertex

Each track is two electrons
—2 mip scale per hit

Use both topology and dE/dx to identify interactions



Neutral current event with 1 GeV =°
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Efficiency and rejection study

Analysis was based on a blind scan of 450 events, carried out
by 4 undergraduates with additional scanning of “signal”

events by experts.

Neutrino event generator: NEUGENS3, used by MINOS/ NOvA collaboration (and

others)

Hugh Gallagher (Tufts) is the principal author.

GEANT 3 detector simulation (Hatcher, Para): trace resulting particles through a
homogeneous volume of liquid argon. Store energy deposits in thin slices.

signal efficiency

\

background rejection

=P 99.8% NCrejection

efficiency

Good signal

efficiency (81+£7)%

Event Type N | pass € i 4
NC 2090 | 4 - 0.99+0.01
signal v, CC| 32 | 26 | 0.81+0.07 -
Beam v, CC| 24 | 14 | 0.58+0.10 -
Beam v, NC| 8 0 - /
Beam 7, CC| 13 | 10 |0.77+0.09 -
Beam 7. NC | 19 0 - /
vy, CC | 32 0 - /
v CC | 32 1 - /




Can we build these detectors?
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Overview
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Scalable = 15-50 kTons
4 - 6 wire planes




Each wire plane: Wires are

| 150 um stainless steel
drift *Smm pitch

- »23m long (15kton)
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Challenges for massive detector

Purity:
3 m drift in LAr

purification - starting from atmosphere (cannot evacuate detector tank)
- effect of tank walls & non- clean-room assembly process

Wire-planes:
long wires - mechanical robustness, tensioning, assembly,
breakage/ failure

Signal processing:
electronics - noise due to long wire and connection cables (large
capacitance)



Addressing the challenges: The
R&D path

4

15 kton
A

1 kton

130 l{}n < > - C:_b
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LAr TPC Test Setup @ Yale
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Purity monitor in liquid argon

Purity and light
collection



Material tests

System at Fermilab for testing filter materials and the
contaminating effects of detector materials (e.g. tank-walls,
cables) e

/T

i] H20 Monitor X

PR

™ icarus B
purity monitor

G. Carugno et al.,
NIM. A292 (1990

Filter

| | Test Samples
Filter Dewar P
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Material tests

setup for lifetime measurements (effect of materials
and effectiveness of different filters) under assembly
at Fermilab




5 m Drift Demonstration at

Fermilab

Cryostat drawing for purchasing department
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Long wires tests

* measurements of the mechanical properties
of the wires both at room temperature and in

LAT
e 100 uwand 150 u Stainless Steel 304V

*develop wire holders that work at cryogenic
temperature and do not pollute LAr

edetermination of wire tension
* electrostatic stability
* restriction of sagittas
* wire supports

*study of noise on long wires
* mechanical vibrations (i.e. induced by LAr flow)
* measure damping effect of LAr on wire oscillations
* study of electronics coupled to long wires (large input
capacitance !)



The “130 ton” detector
(50 ton fiducial)

*Physics development using existing technology

® Establish successful technology transfer

* Record and reconstruct complete neutrino
Interactions (v,and v,NC and CC) on the

surface in the presence of cosmic rays
* Establish physics collaboration by:

* Developing event identification

* Developing reconstruction

* Developing analysis

Where to find 2 GeV
electron neutrinos ?




Electron Neutrinos in MINOS

Surface Building
From the NOVA Proposal March 15,2005

— | *Thecharged current V,

g event spectrum in the
‘l‘““ “““““ MINOS surface building.

V., CC - |
© . T e The V, event spectrum
events /4 '___—I—————r—— ——————————

= peaks just below 2 GeV.
50 MeV 5 -l

There are ~2,000 V, events

shown here for 6.5E20 POT
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NuMI is presently providing ~2E20 POT per year.
The 130 ton LArTPC has a 50 ton fiducial mass.
ethe LAr TPC detector would get ~1600 V, events/year.



Muon Neutrinos in MINOS

Surface Building

From the NOVA Proposal March 15,2005
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e Same assumptions
as previous slide,
except this shows
~15,000 muon
neutrinos.

e The Vi peak at ~2.8

GeV is from Kaon
decay.

ethe LAr TPC detector would get ~34000 VCC events/year
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The “1 kton” tank

*Engineering Development to demonstrate
scalability to large tank

e Construction of tank with the same
techniques to be used with the large tank

* Demonstrate argon purity with the same
techniques to be used with the large tank

* Mechanical integrity of TPC
Readout signal / noise
* Microphonics due to argon flow

* Uncover whatever surprises there may be
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Neutrino Initiative: NOVA

e |n addition to Beam power: detector mass and
detector sensitivity: NOVA is 30 ktons, totally

active

e NOVA Is the only experlment sensitive to matter
effects (hence-theme
We want to start a long term R&D program towaids

massive totally active liquid Argon detectors for
extensions of NOVA.

e Improvement is proportional to (Beam power) x
(detector mass) x (detector sensitivity) >

.
-
ewnmmmwan

growing support from university groups as well




Conclusions

Liquid Argon TPC detectors are great tools
for low energy neutrino physics

~1kton scale detectors have been successfully
built by ICARUS

There is a path towards adressing R&D questions
for realizing massive LArTPCs.

We have great new neutrino sources -- we should
couple these with great detectors!



Capability depends on § and 04 The CP Violation
Parameter

Three Neutrino Mixing Matrix:
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Given very high v, efficiency and NC background

rejection well below %2 of the
intrinsic v, beam backgrounds,

how sensitive are these detectors?

i

Sensitivity =
detector mass x
detector efficiency x
protons on target/yr x
# of years



As an example: focus on recent paper

by Mena and Parke
hep-ph/0505202

Small Medium Large
NOvA | 30kTon 30kton + 30kton +
PD or PD +
XD Mmass or exposure X5 mass or exp.
LArTPC 8kton 40kton 40kton
(90% v, + PD or
eff.) exposure

All sensitivities assume 3 years running each in

v and v mode



Sensitivity to CP phase(sin 8) vs sin®26,, for
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Efficiency and Rejection study

Analysis was based on a blind scan of 450 events, carried out by
4 undergraduates with additional scanning of “signal” events by

experts.

Neutrino event generator: NEUGEN3. Used by MINOS/NOVA collaboration.

Hugh Gallagher (Tufts) is the principal author.

GEANT 3 detector simulation: trace resulting particles through a homogeneous
volume of liquid argon. Store energy deposits in thin slices.

Training samples:
50 events each of v,CC, v CC and NC

Individual samplesto traln
mixed samples to test training
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Overall efficiencies, rejection factors,
v ,  anddependencies

N pass € 1 . #
NC 290 | 4 -~ | 725 Signal v,: DiS
signal v, 32 26 1\'0 81y - 1:’: : - QEL -
Beam v, CC 24 14 0.58 - 15 Y ;

NC 8 0 - 125 g— i
Efficiency is substantial i oo mm I N
even for high multiplicity ™ >

events 4 5 ]
Efficiency is ~100% for ¢
y<0.5, and _
~50% above this ;

y=Enaa/E,



